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The receptivity problem of plane Bingham–Poiseuille flow with respect to weak
perturbations is addressed. The relevance of this study is highlighted by the linear
stability analysis results (spectra and pseudospectra). The first part of the present
paper thus deals with the classical normal-mode approach in which the resulting
eigenvalue problem is solved using the Chebychev collocation method. Within the
range of parameters considered, the Poiseuille flow of Bingham fluid is found to
be linearly stable. The second part investigates the most amplified perturbations
using the non-modal approach. At a very low Bingham number (B � 1), the optimal
disturbance consists of almost streamwise vortices, whereas at moderate or large B

the optimal disturbance becomes oblique. The evolution of the obliqueness as function
of B is determined. The linear analysis presented also indicates, as a first stage of a
theoretical investigation, the principal challenges of a more complete nonlinear study.

1. Introduction
A viscoplastic fluid possesses a yield stress, τ0, below which it either flows as an

unsheared plug or does not flow. Bird, Dai & Yarusso (1983) gave a list of materials
that fall into this category. According to these authors, the Bingham model is often
used to describe the rheological behaviour of a viscoplastic fluid. For one-dimensional
shear flow with a velocity u(y) in the x-direction, the relationship between the shear
stress τxy and the velocity gradient du/dy, is given by

τxy = sgn(du/dy) τ0 + µpdu/dy ⇔ |τxy | > τ0

du/dy = 0 ⇔ |τxy | � τ0,

}
(1.1)

where sgn indicates the sign of the argument, µp is the plastic viscosity, and x and y

are the streamwise and normal directions, respectively.
Shear flows of viscoplastic fluids are very common in oil wells, especially during

drilling and cementing operations, and also in the food processing and in mining
industries. For many of these applications, prediction of the flow regime can be of
critical importance. Although commonly used as industrial fluids, there is surprisingly
little published work that focuses on transition of these flows. Here, we consider the
problem of transition in a yield-stress fluid flow in a plane channel geometry, which
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is often used in an oilfield setting as an approximation of such flow in a narrow
annulus.

Several phenomenological criteria for the transition have been proposed in the
literature (Hedström 1952; Metzner & Reed 1955; Ryan & Johnson 1959; Hanks
1963; Hanks & Pratt 1967; Mishra & Tripathi 1971; Slatter 1999). The general
approach consists of forming a parametric ratio of various physical flow quantities
that are assumed to determine the stability of the flow. For Newtonian flows, the value
of this parametric ratio at which the flow leaves the laminar regime is known or can
be calculated. The same value is then assumed to be valid for a transition prediction
in any purely viscous non-Newtonian fluid flow. However, when the rheological
properties of the fluid depart significantly from the Newtonian case, the predictions
provided by such phenomenological criteria diverge, and there is no way to determine
which criterion is preferable.

To the best of our knowledge very few experimental studies on transition in
Bingham (or Herschel–Bulkley) fluid flows are available in the literature. In all these
experimental studies, the transition was partly triggered by intrinsic imperfections in
the experimental setups. Hanks & Pratt (1967) reported experimental results which
show that the transitional Reynolds number, RT , increases significantly with the
Bingham number B , defined as the ratio of the yield stress to a nominal viscous
stress.

So far, no full theory of transition of channel flows exists, even for Newtonian fluids.
Nevertheless significant progress has been achieved mainly due to the recognition of
the relevance of the investigation of optimal disturbances. Evidence of transient
growth preceding transition to turbulence has been found for example in numerical
simulations by Henningson, Lundbladh & Johansson (1993) and in experimental
studies by Klingmann (1992). An essential characteristic of the amplification of
the perturbation energy is that it only applies to three-dimensional perturbations.
For two-dimensional perturbations transient energy growth is far weaker than in
the three-dimensional case (Farrell 1988; Butler & Farrell 1992). Work has been
done in this direction for plane Poiseuille flow by Gustavsson (1991) and Reddy &
Henningson 1993. The largest transient growths have been found for small streamwise
wavenumbers.

To summarize, the works mentioned above state that a linear instability is not
a necessary condition for triggering the transition of laminar flows. A strong non-
normality of the linearized Navier–Stokes operator may be responsible for a significant
amplification of disturbances, the spatial distribution and growth of which can be
rigorously determined by the so-called non-modal analysis. This analysis remains, so
far, basically linear. It is, however, believed that a sufficient growth of the original
linear disturbances may trigger strongly nonlinear mechanisms capable of sustaining
turbulence. This argument is much more than a pure mathematical speculation, as
confirmed by the phenomenological formulae for pressure drop coefficients in ducts,
where the wall roughness takes on, in a phenomenological manner, the role of the
disturbances. In the absence of a fully nonlinear theory the non-modal analysis may
provide a lower bound for the transition and indicates the disturbances most likely
to be responsible for the transition.

The non-Newtonian Bingham case has not been investigated so far from this point
of view. Frigaard, Howison & Sobey (1994) performed a linear stability analysis,
with a modal approach, of plane Poiseuille flow of a Bingham fluid subjected to
two-dimensional disturbances. To be consistent with Newtonian fluid results, the
eigenvalue problem obtained (linear stability equations)-was solved with modified
boundary conditions at the yield surface. One can note that from the experimental
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point of view a more accurate characterization of viscoplastic behaviour may
necessitate more complex models (such as the Herschel–Bulkley one); however the
most important features of viscoplastic fluid flows – the presence of a plug zone and
yield surfaces as well as the shear-thinning behaviour of the effective viscosity – are
rendered well by the simple Bingham model. Therefore the theoretical studies retain
this model as a reference for the fundamental theoretical development.

For Bingham fluids and other nonlinear viscous fluids, there is no equivalent
of Squire’s theorem, unless unphysical restrictions are imposed (Georgievskii 1993).
Then, three-dimensional disturbances must be considered. Using essentially Singe’s
method (Synge 1938), Frigaard & Nouar (2003) derived the eigenvalue bounds
of the three-dimensional linear stability problem. They showed that for large
Bingham numbers, the upper bound for the Reynolds number at which three-
dimensional linear stability can be achieved has the form of Re = O(B3/4) for
all wavelengths. A nonlinear stability analysis based on the energy method was
performed by Nouar & Frigaard (2001). The critical Reynolds number, ReE , below
which the kinetic energy of any finite-amplitude disturbance decays monotonically
in time was determined. For large B , the authors found that ReE = O(B1/2).
There was no direct contribution of the yield stress to the viscous dissipation in
their analysis. The effect of τ0 on ReE arose only from the modification of the
width of the yielded zone and via the velocity gradient of the base flow. These
relevant theoretical studies lead to analytical expressions for the dependence of
the critical conditions on the Bingham number. However, they provide insufficient
insight into the instability mechanism. Moreover, the bounds obtained are not
sharp because they were derived using functional inequalities rather than computed
values.

Poiseuille flow of Bingham fluid, referred to hereafter as plane Bingham–Poiseuille
flow (PBPF), is characterized particularly by the existence of a plug zone moving
as a rigid body and a yielded zone in which the effective viscosity varies with
the second invariant of the rate of strain tensor. This particular flow pattern may
modify the transient growth compared to a Newtonian flow. The aim of the present
investigation is to determine the influence of B on the transient growth and on
the optimal perturbation, i.e. the initial conditions that provide the maximal energy
growth. Trefethen et al. (1993) showed that the transient growth is closely associated
with the sensitivity of the spectrum to small perturbations of the stability operator,
quantified by the pseudospectra. Therefore, it is first necessary to revisit the classical
linear stability problem using a modal approach with the exact boundary conditions
at the yield surface, in order to determine the properties of the eigenvalue spectra
in two- and three-dimensional situations. To the best of our knowledge, this has
not been done previously. Moreover, the three-dimensional situation has not yet been
considered despite the fact that there is no equivalent to Squire’s theorem for Bingham
fluids flows.

The paper is organized as follows. Section 2 recalls the characteristics of plane
Bingham–Poiseuille flow. The equations governing the linear stability problem are
derived in § 3. A scalar product and its associated norm based on energy density
are introduced, and the techniques used to characterize the transient growth are
developed. In § 4, the numerical method used to solve the eigenvalue problem is
presented. Section 5 is dedicated to an analysis and discussion of the results. It is
divided into three parts: § 5.1 is devoted to spectra properties, § 5.2 is concerned with
describing the pseudospectra and § 5.3 deals with the transient growth and optimal
perturbation. Conditions for no energy growth are derived in § 6, and some concluding
remarks on the findings are itemized in § 7.
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2. Equations of motion: plane Bingham–Poiseuille flow
A plane channel flow of an incompressible Bingham fluid with a yield stress τ0 and

a plastic viscosity µp is considered. The governing equations written in dimensionless
form are

∇ · U = 0, (2.1)

∂U
∂t

+ (U · ∇)U = −∇p + ∇ · τ (U), (2.2)

where U is the velocity, p is the pressure and τ is the deviatoric extra-stress tensor.
The velocity vector is of the form U =U ex +V ey +W ez, where U, V, W are the velocity
components, and ex, ey, ez are unit vectors in the streamwise (x), normal to wall (y),
and spanwise (z) directions, respectively. The above equations are non-dimensionalized
using the half-width of the channel H as the length scale, the maximum velocity U0

of the base flow as the velocity scale and the dynamic pressure ρU0
2 as the stress and

pressure scale.
Using the Von Mises yield criterion for the flow, Oldroyd (1947a, b) formulated the

constitutive relations between stress, strain and strain rate for a Bingham fluid by
assuming an elastic response prior to yielding and a viscous response afterwards. The
elastic behaviour is generally neglected (Beris et al. 1985; (1947a, b) Coussot 1999)
and the constitutive equations can be written after scaling as

τ = µγ̇ ⇔ τ >
B

Re
, (2.3)

γ̇ = 0 ⇔ τ �
B

Re
, (2.4)

with

µ =
1

Re

(
1 +

B

γ̇

)
, (2.5)

where γ̇ =
√

γ̇ij γ̇ij /2 and τ =
√

τij τij /2 are the second invariants of the strain rate γ̇

and deviatoric stress tensors τ respectively and µ is a dimensionless effective viscosity.
The components of γ̇ are γ̇ij =Ui,j + Uj,i . The dimensionless parameters B and Re

are respectively the Bingham and Reynolds numbers

B =
τ0H

µp U0

, Re =
ρU0H

µp

. (2.6)

In the regions where the yield stress is not exceeded, the rate of strain tensor is
identically zero and the stress tensor is undetermined. The fluid within these regions is
constrained to move as a rigid body. These regions are called unyielded or plug zones.
The interface between the yielded and the unyielded zones is called the yield surface.
Its location is determined via the yield criterion, which is given in dimensionless form
as τ =B/Re. The stress, −pδij + τij , and the velocity components are continuous
across the yield surface.

For one-dimensional shear flow, the pressure Pb and the axial velocity profile Ub(y)
are given by

Pb = − 2 B

Re(1 − y0)2
x + constant, (2.7)
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Figure 1. Plane Bingham–Poiseuille flow configuration.

Ub(y) =

⎧⎨
⎩

1, 0 � |y| < y0,

1 −
(

|y| − y0

1 − y0

)2

, y0 � |y| � 1.
(2.8)

An example of velocity profile is illustrated in figure 1. At the yield surfaces (y = ±y0),
we have |τxy | =B/Re. Using the relation |τw| =B/(Rey0), where |τw| is the wall shear
stress, the position y0 of the yield surface is the solution to the equation

B(1 − y0)
2 − 2y0 = 0, (2.9)

which is given by

y0 =
1

B
(B + 1 −

√
2B + 1). (2.10)

3. Linear stability analysis
3.1. Perturbation equations

Following the usual linear stability analysis, an infinitesimal perturbation
(
εu′, εp′)

with ε � 1 is imposed on the base flow (Ub, Pb). The perturbed flow is given by

(Ub + εu′, Pb + εp′) = (Ub + εu′, εv′, εw′, Pb + εp′). (3.1)

Wherever the yield stress is exceeded, the effective viscosity of the perturbed flow is
expanded about the base flow:

µ(Ub + εu′) = µ(Ub) + εγ̇ij (u′)
∂µ

∂γ̇ij

(Ub) + O(ε2). (3.2)

Using (2.3), (2.5) and (3.2), the components τij of the deviatoric stress tensor for the
disturbed flow can be expressed as

τij (Ub + εu′) = τij (Ub) + ετ ′
ij + O(ε2), (3.3)

with

τ ′
ij = µ(Ub)γ̇ij (u′) =

1

Re

(
1 +

B

|DUb|

)
γ̇ij (u′) if ij �= xy, yx, (3.4)

τ ′
ij =

1

Re
γ̇ij (u′) if ij = xy, yx, (3.5)
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where D ≡ d/dy. It is interesting to observe that τ ′
xy is independent of B . Then, the

perturbation shear stress tensor τ ′
ij is anisotropic. This is a consequence of non-

constant µ(Ub). The effects on the additional viscous dissipation due to the Bingham
terms will be also anisotropic.

From (3.3), it follows that the second invariant of the deviatoric of the stress tensor
is linearly perturbed: |τ (Ub + εu′) − τ (Ub)| = O(ε). Therefore, it can be assumed that

the yield surface positions y
±
Y will be also linearly perturbed from their initial position

±y0:

y
±
Y (Ub + εu′) = ± y0 ± εh±(x, z, t). (3.6)

The linearized perturbation equations in the two yielded zones have been derived
by Frigaard et al. (1994) and Frigaard & Nouar (2003), in a standard way. These
authors showed that the linear stability problems in the two yielded regions decouple
and are equivalent; therefore, only one domain is considered, say y ∈ [y0, 1]. The
disturbance quantities u′, p′ and h± are assumed periodic and of the form

(u′, v′, w′, p′, h±) = (u(y, t), v(y, t), w(y, t), p(y, t), h±(t))ei(αx+βz), (3.7)

where α and β are taken to be real and are the wavenumbers in the x- and z-
directions, respectively. Using (3.7) and assuming that α �= 0 or β �= 0, the following
initial value problem is obtained:

i[αu + βw] + Dv = 0, (3.8)

∂u

∂t
= −iαUbu − vDUb − iαp +

1

Re
Fu +

B

Re

[
−k2u − iαDv

|DUb|

]
, (3.9)

∂v

∂t
= −iαUbv − Dp +

1

Re
Fv +

B

Re

[
D

(
2Dv

|DUb|

)
+

−β2v + iβDw

|DUb|

]
, (3.10)

∂w

∂t
= −iαUbw − iβp +

1

Re
Fw +

B

Re

[
D

(
iβv + Dw

|DUb|

)
− k2w + iβDv

|DUb|

]
, (3.11)

with F ≡ D2 − k2 and k2 = α2 + β2. The boundary conditions at the wall, y = 1, and
at the yield surface y = y0, are

u(1) = v(1) = w(1) = 0, (3.12)

u(y0) = v(y0) = w(y0) = 0, (3.13)

Dv(y0) = Dw(y0) = 0, Du(y0) = − hD2Ub(y0). (3.14)

The Dirichlet boundary conditions u′ = 0 at the yield surface come from the fact
that the unyielded plug zone is constrained to move as a rigid body according to
the Bingham model (2.4). As with any rigid body motion, the velocity within the
plug can be decomposed instantaneously into a linear motion and a rotation about
an instantaneous centre of mass of the plug zone. As the perturbation is periodic,
the plug zone can only have a linear motion. As a consequence, inside the plug,
Ub + εu′, v′ and w′ are independent of the spatial coordinates. With the help of
velocity continuity across the yield surface, it follows that the fluid particles at the
yield surface satisfy (∂/∂x)(Ub + εu′) = (∂/∂z)(Ub + εu′) = 0 at y = y

±
Y . Combining this

condition with (3.7) lead at the first order to u′ = 0 at ±y0. The interpretation of the
other boundary conditions at ±y0 is given by Frigaard & Nouar (2003).

The system of equations (3.8)–(3.11) can be expressed in terms of u and v if
β �= 0 or v and w if α �= 0, or in terms of v and the y-component of the vorticity,
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η = iβu − iαw. For this last formulation, unlike Newtonian fluids, the Bingham terms
do not allow us to obtain an Orr–Sommerfeld-like equation for v decoupled from
the η-equation. The results presented in this paper were obtained using the (u, v) or
(v, w) formulation, and some of them were checked with the (u, v, w, p) formulation.

3.2. Long-time behaviour of the disturbance: eigenvalue problem

Assuming solutions of the form ψ = ψ̂ exp(−iωt), where the vector ψ stands for
(u, v)T or (v, w)T , depending on whether the (u, v) or (v, w) formulation is used,
the corresponding initial-value problem is transformed into a generalized eigenvalue
problem with the complex frequency ω as the eigenvalue. It can be formally written
as

Lvw(v̂, ŵ)T = ωMvw(v̂, ŵ)T , (3.15)

or

Luv(û, v̂)T = ωMuv(û, v̂)T . (3.16)

The growth (or decay) rate of the amplitude of a given mode is determined by the
sign of ωi = Im(ω): the amplitude will grow exponentially in time if ωi > 0 and will
decay exponentially in time if ωi < 0. The real part ωr is the circular frequency and
the ratio ωr/α is the phase velocity.

3.3. Transient growth and optimal disturbance

The transient evolution of a perturbation in the linear regime is determined by
following the methodology described by Schmid & Henningson (1994). It is presented
here only for the (u, v) formulation, but a similar development applies to the (v, w)
or other formulations. We introduce a velocity disturbance vector-function q = (u, v)T

and a scalar product based on the energy density,

(q1, q2)E =

∫ 1

y0

[
k2

β2
u∗

1u2 + v∗
1v2 +

1

β2
Dv∗

1Dv2 +
iα

β2
(Dv∗

1u2 − u∗
1Dv2)

]
dy, (3.17)

where ∗ denotes the complex conjugate. Therefore, the associated norm is given as

‖q‖2
E = (q, q)E. (3.18)

Let us consider the linear subspace SM spanned by the M eigenfunctions
q̂j = (ûj , v̂j )

T corresponding to the first M eigenvalues {ω1, ω2, . . . , ωM} of the

spectrum of Auv = M−1
uv Luv sorted in decreasing order of their imaginary parts:

SM = span{q̂1, q̂2, . . . , q̂M}.

An admissible perturbation q is expressed as a linear combination of the eigen-
functions q̂j ,

q =

M∑
j=1

κj q̂j , (3.19)

Its energy growth is measured by the ratio g(t) between the energy norm ‖q(t)‖2
E

of the perturbation at time t and its initial norm ‖q0‖2
E:

g(t) =
‖q(t)‖2

E

‖q0‖2
E

. (3.20)
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For a given set of values of α, β, Re, and B , the maximum possible energy
amplification at time t over all possible initial combinations of the M eigenfunctions,
is denoted by

G(t) = sup
‖q0‖2

E �=0

g(t). (3.21)

The maximum growth for all time t is denoted by

Gmax(α, β, Re, B) = Gmax = sup
t�0

G(t). (3.22)

The quantity Gmax is associated with a particular initial disturbance that reaches Gmax

at a specific time tmax(α, β, Re, B), i.e. Gmax = G(tmax).
The maximum of Gmax for all the pairs (α, β) ∈ R+ × R+ is denoted Gopt(Re, B) =

supα,βG
max(α, β, Re, B) and corresponds to the optimal perturbation. Finally,

one can define a specific time topt(Re, B) related to Gopt(Re, B).

4. Numerical method
As the width (1−y0) of the yielded zone varies with B , it is useful to map the domain

y ∈ [y0, 1] onto ỹ ∈ [0, 1] by substituting y = ỹ(1 − y0) + y0. This leads to the scaling
φ = φ̃(1−y0) for the problem variables such as φ ≡ x, z, t and the scaling ζ̃ = ζ (1−y0)
for the problem parameters ζ ≡ α, β, ω, Re, B . With the introduction of the scaled
variables and parameters denoted by the tilde, the expressions for the initial-value
problems and the eigenvalue problems remain unchanged. In terms of ỹ, the basic
flow velocity profile Ub =1 − ỹ2 is artificially independent of the Bingham number.

A spectral collocation method based on Chebychev polynomials is applied to
compute the eigenvalues and the corresponding eigenfunctions of the system (3.15)
or (3.16). The equations are discretized on the Gauss–Lobato grid. The generalized
eigenvalue matrix system obtained is solved using the QZ algorithm available in the
Matlab-software package. The details of the procedure are reported by Schmid &

Henningson (2000). Calculations are performed for R̃e � 3 × 104, 0.02 � B̃ � 40,
α̃ � 5 and β̃ � 5. Spectra with increasing collocation points (N = 32, 64, 96, 128 . . .)
were compared to determine the adequate number (N +1) of Chebychev polynomials.
It is found that with N =128, the first 40 eigenvalues taken in order of increasing
absolute value of their imaginary part were resolved accurately within five digits (i.e.
invariant digits when N is increased) for almost all the situations considered in this
paper. For Newtonian plane Poiseuille flow, our results with a truncation N = 64 to
5 significant digits agree with the results reported by Orszag (1971).

The computation of the eigenmodes can be performed using the (u, v, w, p)
formulation as described by Khorrami, Malik & Ash (1989). This formulation
remains valid even if α = 0 or β = 0. However, the size of the matrices is increased
to 4(N + 1) × 4(N + 1), while for the (u, v) or (v, w) formulations, the matrices are
only 2(N + 1) × 2(N + 1). Therefore, more computational time is required for the
(u, v, w, p) formulation. Nevertheless, several tests are performed to ensure that the
three formulations lead to the same results.

5. Results
The aim of the present study is to understand the influence of the Bingham number

on the flow stability. This influence arises from five different effects: (i) variation of
the inertial terms, (ii) variation of the width of the plug zone, (iii) boundary conditions
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for the perturbation at the yield surface, (iv) shear-thinning behaviour of the effective
viscosity which leads here to an anisotropy of the perturbation shear stress tensor,
and (v) variation of the dissipative terms. It is clear that it is of interest to understand
the contributions of these individual effects. The scaling parameters used in § 2 and
the introduction of the tilde variables in the § 4, allow us to implicitly account for
the modification of the plug zone width and of the shear rate when B varies. If the
Bingham terms in the system (3.8)–(3.14) written with a tilde are cancelled artificially,
we recover the linear stability problem of the Couette–Poiseuille flow of a Newtonian
fluid, where the upper plate (ỹ = 1) is fixed and the lower plate (ỹ = 0) is moving
with a constant velocity Uc =1. The velocity profile, Ub = 1 − ỹ2, can be written as
the sum of Couette (1 − ỹ) and Poiseuille (Up = ỹ − ỹ2) components. This plane
Newtonian Couette–Poiseuille flow (PNCPF) permits the effect of the vanishing of
the perturbation at the yield surface to be separated out.

5.1. Long-time behaviour of the disturbance

Depending on the wavenumbers α̃ and β̃ , four types of disturbances can be
considered: (i) one-dimensional perturbation (α̃ = β̃ =0), (ii) streamwise perturbation
(α̃ �= 0, β̃ = 0), (iii) spanwise perturbation (α̃ = 0, β̃ �= 0) and (iv) oblique perturbation
α̃ �= 0, β̃ �= 0. The one-dimensional analysis (α̃ = β̃ = 0) was performed by
Frigaard et al. (1994), who demonstrated that this mode is unconditionally linearly
stable. In the present study, some new results are presented and discussed for the
three remaining situations.

5.1.1. Streamwise perturbation: β = 0

The (v, w) formulation was considered for the two-dimensional streamwise
perturbation. The linear stability equations reduce to two decoupled differential
equations: (i) a fourth-order differential equation for v̂, which is similar to the
Orr–Sommerfeld equation with an additional Bingham term and (ii) a second-order
differential equation for ŵ, which is similar to the Squire equation with an additional
Bingham term. These will be referred to as the Bingham–Orr–Sommerfeld and
Bingham–Squire equations respectively. In the following discussion, the characteristics
of the Bingham–Orr–Sommerfeld modes and Bingham–Squire modes are described

in detail. The Bingham–Orr–Sommerfeld spectra obtained for α̃ = 1, R̃e= 104 and
different values of B̃ are illustrated in figure 2. The eigenvalues (particularly the
A-family) are weakly sensitive to an increase of B̃ . To interpret this result, the
Bingham–Orr–Sommerfeld equation is multiplied by the complex conjugate v∗ and
integrated between the yield surface (ỹ =0) and the wall (ỹ = 1). In the following, the
hat on u, v and w is dropped for simplicity. Hence, we obtain

ω̃i〈|D̃v|2 + α̃2|v|2〉 = α̃〈(vrD̃vi − viD̃vr )D̃Ub〉

− 1

R̃e
〈|D̃2v|2 + α̃4|v|2 + 2α̃2|D̃v|2〉 − 4α̃2 B̃

R̃e

〈
|D̃v|2

|D̃Ub|

〉
(5.1)

and

ω̃r〈|D̃v|2 + α̃2|v|2〉 = α̃
〈
D̃2Ub|v|2 + Ub(α̃

2|v|2) + |D̃v|2)
〉

+ α̃〈(D̃vrvr + D̃vivi)D̃Ub〉, (5.2)

where |v|2 = v2
r + v2

i and 〈.〉 =

∫ 1

0

(.) dỹ.
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Figure 2. Bingham–Orr–Sommerfeld spectra for α̃ = 1 and R̃e =104. �, B̃ =0.02, y0 ≈ 0.01;
+, B̃ =10, y0 ≈ 0.83 �; B̃ = 40, y0 ≈ 0.95. The constituents of the spectra are classified into
three groups labelled A, P, and S families as suggested by Mack (1976): (i) family A exhibit
a low phase velocity and correspond to the wall modes; (ii) family P with a phase velocity
ωr/α ≈ 1 correspond to the modes concentrated near the yield surface and (iii) family S
correspond to the mean modes with phase velocity ωr/α ≈ 2/3.

One can observe that: (i) there is no Bingham term in the expression for ω̃r ; (ii) the
Bingham number plays the role of a dissipation term in (5.1); and (iii) the viscous
dissipation originating from the plastic viscosity contains a term of a second-order

derivative of v, −(1/R̃e)〈|D̃2v|2〉, while the viscous dissipation due to the Bingham
number involves only a first-order derivative of v. This is a consequence of the fact
that τ ′

xy does not depend on B , as indicated in § 3.1. The profiles of the different terms

of (5.1) shows, in particular for the wall modes, that 〈|D̃v|2/|D̃Ub|〉 < 0.01 〈|D̃2v|2〉.
Therefore, if α̃ and B̃ do not exceed O(1), the viscous dissipation due to the Bingham
term remains much lower than the pure viscous dissipation (originating from the
plastic viscosity). A rough analysis can be made to estimate a magnitude order of B̃

below which the viscous dissipation due to the Bingham number can be neglected in
comparison with the pure viscous dissipation. Using Poincaré inequality and assuming
|D̃Ub| ≈ 1, since the eigenfunction for the wall modes is large, particularly near the
wall, B̃ � O(π2/4α̃2 + 0.5).

For the P-modes, the eigenfunctions are localized near the yield surface where the
shear rate tends to zero. The viscous dissipation due to the Bingham terms increases
significantly, inducing a decrease of ω̃i .

For α̃ �= 1, the shape of the Bingham–Orr–Sommerfeld spectrum is similar to that
of α̃ = 1 if it is represented in terms of (ωi/α, ωr/α). The variation of the eigenmodes
as α̃ changes is shown in figure 3(a, b), where ωi/α and ωr/α of the four least stable

eigenmodes are plotted as function of α̃ for α̃R̃e = 5000, β̃ = 0 and α̃2B̃ = 2.
Concerning the Bingham–Squire modes, it can be shown that

ω̃i〈|w|2〉 = − 1

R̃e

〈(
1 +

B̃

|D̃Ub|

)
(|D̃w|2 + k̃2|w|2)

〉
< 0, (5.3)



Stability of plane Bingham–Poiseuille flow 221

0 1 2 3 4 5

(a)

10–1

~α

1 2 3 4 5
~α

–ωi—–α

1

2

3

4

0

0.2

0.4

0.6

0.8

1.0

ωr—α

1

3

2

4

(b)

Figure 3. Variation of (a) −ωi/α and (b) ωr/α for the first four eigenvalues with streamwise

wavenumber α̃, at α̃R̃e= 5000 and α̃2B̃ = 2.
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Figure 4. Bingham–Squire spectra for α̃ = 1, R̃e= 104 and three values of B̃ . The solid circles
correspond to B̃ = 0.02, the squares to B̃ = 2 and the pluses to B̃ = 40. The dotted line is
the phase velocity of the spectrum stem when the viscous dissipation in the Bingham–Squire
equation is assumed due only to the Bingham terms.

and

ω̃r〈|w|2〉 = α̃〈Ub|w|2〉. (5.4)

The Bingham–Squire modes are thus always damped and the Bingham number has

a stabilizing effect. Figure 4 shows the Bingham–Squire family for α̃ = 1, R̃e = 104

and three values of B̃ : 0.02, 2 and 40. As expected, a significant decrease of ω̃i is
observed as B̃ increases. We also note, a decrease of the stem phase velocity, ω̃r/α̃r ,

with increasing B̃ . The numerical results show that for given R̃e, and increasing
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B̃ , the stem phase velocity decreases from cr ≈ 2/3 and tends towards an asymptotic
value of 0.572. This asymptotic value is the stem phase velocity of the eigenvalue
spectrum when the viscous dissipation in the Bingham–Squire equation is assumed to
be due only to the Bingham terms.

5.1.2. Spanwise perturbation: α =0

On setting α = 0, the linear stability equations given by the (u, v) formulation reduce
to

(D̃2 − β̃2)u − R̃eD̃Ubv = −iR̃eω̃u +
B̃

|D̃Ub|
β̃2u, (5.5)

(D̃2 − β̃2)2v = −iω̃R̃e(D̃2 − β̃2)v

−B̃

[(
D̃2 + β̃2

)(
D̃2v + β̃2v

|D̃Ub|

)
− 4β̃2D̃

(
D̃v

|D̃Ub|

)]
. (5.6)

The solutions to equations (5.5) and (5.6) can be divided into two eigenmode
classes. The first one corresponds to the set of the eigenmodes of (5.6) with a
particular solution of (5.5). The second class represents the set of eigenmodes of (5.5)
with v = 0. Following the same method as for a streamwise perturbation, it can be
shown that the solutions to (5.5) and (5.6) are imaginary, always damped and the
Bingham term has a stabilizing effect. However, this effect is more significant for
the eigenvalues of (5.6) than for those of (5.5). This result can be expected from a
comparison of the highest derivative order in the Bingham term with that in the pure
viscous dissipation term in (5.6) and (5.5). This is a consequence of the fact that the
shear stress τ ′

xy does not depend on B̃ .

Finally, for fixed B̃ , the increase of R̃e leads to a ‘coalescence’ of the eigenvalues
near the real axis.

5.1.3. Oblique perturbation: α �= 0 and β �= 0

In this situation, either the (u, v) or the (v, w) formulation can be used. The
numerical results show that the shape of the eigenvalue spectrum is similar to that
of Newtonian fluid, except that for Bingham fluid, there are two separated vertical
branches, one of which can be associated to the Bingham–Squire modes described in
§ 5.1.1.

Finally, for the range of the parameters considered in the present study; we have
not found any instability, thus, the PBPF is conjectured to be linearly stable. This is
a consequence of the vanishing perturbation at the yield surface. The flow remains
linearly stable even for B̃ � 1, whereas for plane Newtonian Poiseuille flow (PNPF)
and beyond Re =5772 (Orszag 1971) a wall mode leaves the stable half-plane and
the flow becomes unstable. The unmatched critical conditions at the limit B̃ = 0 may
be explained as follows (Metivier, Nouar & Brancher 2005). In the framework of the
linear stability analysis, it is assumed implicitly that the perturbation is infinitesimally
small with respect to all scales of the basic flow. In particular, one can write ε = o(B̃).
From (2.9), we have y0 =O(B̃) as B̃ → 0, thus ε = o(y0). Consequently the yield
surfaces are linearly perturbed and the plug zone remains intact.

As explained at the beginning of this section, when the Bingham terms are cancelled
artificially in the perturbation equations, we recover the linear stability problem of
a PNCPF in which the upper plate is fixed and the lower plate is moving with a
constant velocity Uc. According to Potter (1966), this type of flow is linearly stable
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when the ratio of Uc to the maximum velocity of the Poiseuille velocity component
Up,max is greater than 0.7. In the present study, Uc/Up,max = 4.

The fact that the Bingham–Poiseuille flow is linearly stable means that the
transitional Reynolds number moves to higher values when the magnitude of the
disturbance decreases, pointing out the role of receptivity in determining the fate of
the flow.

5.2. Non-normality: pseudospectra and numerical range

The eigenmodes characterize the behaviour of the disturbance as t → ∞. Thus for
PBPF, a perturbation introduced at t = 0 decays to zero for large times. The traditional
approach of stability based on eigenvalues is not sufficient to describe the temporal
behaviour of the disturbance at all times because of the non-normality of the linear
stability operator. This mathematical property means that there is a potential for
extraction of energy from the basic flow by a subspace of perturbations leading to
transient growth, despite the absence of an exponential instability.

The non-normality of the linear stability operators L ≡ M−1
vw (uv )Lvw (uv ) (3.15) and

(3.16) is characterized by using the ε-pseudospectrum and numerical range tools
(see, for instance, Trefethen et al. 1993; Reddy, Schmid & Henningson 1993, and
references therein). Let C be the discrete representation of L. The ε-pseudospectrum
of C is defined as the set of complex numbers z for which ‖(z I − C)−1‖E � ε−1, or
equivalently, the set of complex numbers z which are eigenvalues of C+�C for some
perturbation matrix �C with ‖�C‖E � ε. It is usually displayed graphically with
contours of the norm of the resolvent (zI − C)−1 for various values of ε. The more
non-normal the linear operator L, the greater the potential of a disturbance operator
�L to affect the eigenvalues. The numerical range of C is the set of complex numbers
(Cq, q), where (., .) is the inner product associated with the energy norm and q is a
vector with a unit norm. We recall that an asymptotically stable non-normal operator
supports transient energy growth if and only if its numerical range extends into the
unstable half-plane. This section focuses on the effect of the Bingham terms on the
variation of the ε-pseudospectra and numerical range in two- and three-dimensional
situations.

5.2.1. Streamwise perturbation

For β =0, the Bingham–Squire (BS) and Bingham–Orr-Sommerfeld (BOS)
operators are decoupled. The BS operator is normal and its eigenvalues lie in the
lower half-plane. Therefore, the numerical range also lies in the lower half-plane. The
non-normality of the BOS operator is due to the term Ub D̃2 in the advection operator,
where the coupling between the mean flow and the disturbance is concentrated. The
operator associated with the Bingham term, i.e. −4α̃2B̃D̃(D̃v/|D̃Ub|) is self-adjoint.
Figure 5 displays a spectral portrait of the BOS operator for α̃ = 1, R̃e= 3000 and
two values of B̃: 0.02 and 20. The iso-contours labelled p delineate the boundaries
in the complex plane of the ε-pseudospectrum with ε = 10−p . The dotted line is the
boundary of the numerical range. A comparison of figures 5(a) and 5(b) indicates that
the effect of B̃ on the pseudospectra remains relatively small as expected according
to the analysis in § 5.1.1.

As for BOS spectra, when α̃ �= 1, the shape of the pseudospectra is not modified
if they are represented in terms of (ωr/α, ωi/α). In addition, according to (5.1), for

fixed α̃R̃e and α̃2B̃ , when α̃ increases, the extent of pseudospectra in the unstable
half-plane is reduced because of the increase of the viscous dissipation.
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Figure 5. Pseudospectra of the Bingham–Orr–Sommerfeld operator. The computation was
performed with α̃ =1, R̃e = 3000 and (a) B̃ = 0.02, (b) B̃ = 20 (y0 ≈ 0.91). Iso-contours labelled
p delineate the boundaries in the complex plane of the ε-pseudospectrum with ε = 10−p . The
dotted line is the boundary of the numerical range.

5.2.2. Spanwise perturbation

For α = 0, the non-normality of the operator M−1
uv Luv arises from the coupling

operator, −R̃eD̃Ub in (5.5). Figure 6 shows the PBPF pseudospectra computed for

α̃ = 0, β̃ = 3.4, R̃e= 3000 and two values of B̃: 0.02 and 20. The solid lines are the
boundaries of the ε-pseudospectrum for ε = 10−1, 10−1.5, 10−2, 10−3, 10−4 and the
dotted line is the boundary of the numerical range. An increase in B̃ significantly
reduces the extent of the pseudospectrum in the upper half-plane. For instance, for
B̃ = 0.02, the operator requires a perturbation of O(10−4) to protrude into the unstable
region, while for B̃ = 20, it requires a much more intense perturbation (O(10−1.5)). In
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Figure 6. Pseudospectra for PBPF with α̃ = 0, β̃ = 3.4, R̃e= 3000 and (a) B̃ = 0.02;
(b) B̃ = 20.

other words, the Bingham terms strongly reduce the degree of non-normality of the
linear stability operator corresponding to a spanwise perturbation.

5.2.3. Oblique perturbation

For an oblique perturbation, α̃ �= 0 and β̃ �= 0, the pseudospectra are qualitatively
similar to those obtained for the two-dimensional operator with β = 0 and α �= 0.
However, the effect of the Bingham number is more significant for the three-
dimensional operator. This effect is clearly visible in figure 7 which illustrates the
boundaries of the numerical range and the ε-pseudospectrum for ε = 10−2.2 and two
values of B̃: 0.02 and 20. The other parameters are set to α̃ = β̃ = 1 and R̃e = 3000.

The non-normality of the stability operator means physically that some disturbances
could experience a transient stage of energy amplification before conforming to the
long-time modal prediction (exponential decay). The aim of the following section is



226 C. Nouar, N. Kabouya, J. Dusek and M. Mamou

~ωr

0 0.2 0.4 0.6 0.8 1.0
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

~ωi

(2)

(2)

(1)

(1)

Figure 7. Boundaries of the numerical range (dotted line) and the ε-pseudospectrum

(continuous line) with ε = 10−2.2 for R̃e= 3000 and (1) B̃ = 0.02; (2) B̃ = 20.

50 100 150 2000

40

80

120

160

200

(1)

(2)

(4)

G(t̃ )

(3)

t̃

Figure 8. Energy amplification at α̃ = 0, β̃ = 2.04 and R̃e =103: (1) PNPF, (2) PNCPF,
(3) PBPF B̃ = 0.02 and (4) PBPF B̃ = 2.

to quantify the effect of B̃ on (i) the quantity of energy that can be extracted from
the basic flow by a disturbance and (ii) the characteristics of the optimal disturbance.

5.3. Transient energy growth and optimal perturbation

Figure 8 shows plots of the amplification factor G(t̃) for PNPF, PNCPF and PBPF at

R̃e= 1000, α̃ = 0, β̃ = 2.04 and two values of B̃: 0.02 and 2. It is observed that at very
low Bingham number, the transient growth of disturbance of wavelength considered
here is strongly reduced compared to PNPF. The origin of the discontinuous behaviour
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Figure 9. Contour plots of the maximum gain Gmax in the (α̃, β̃)-plane at R̃e= 1000 for
PBPF with (a) B̃ = 0.02; (b) B̃ = 2 and for two reference flows, (c) PNPF and (d) PNCPF.

Flow α̃opt β̃opt Gopt topt

Plane Newtonian Poiseuille flow 0 2.04 196 76
Plane Newtonian Couette–Poiseuille flow 0 3.40 77 33
Plane Bingham–Poiseuille flow (B̃ = 0.02) 0 3.40 71.4 31.54
Plane Bingham–Poiseuille flow (B̃ = 2) 1.07 3.11 10.62 8.96

Table 1. Characteristics of the optimal perturbation at R̃e =1000. Results for PNPF are in
good agreement with Butler & Farrell (1992) and Reddy & Henningson (1993). For PNCPF,
good agreement is found with Bergrström (2005).

of G(t̃) at the limit B = 0 was previously discussed. As B̃ increases, G(t̃) decreases
because of the increase of the viscous dissipation. In addition, the growth period
becomes shorter.

To obtain a more complete picture of the transient growth dependence on the
wavenumbers, the maximum growth is calculated for a number of points in the

(α̃, β̃)-plane. The contours of Gmax are presented in the (α̃, β̃)-plane for R̃e = 1000 and
B̃ = 0.02 (figure 9a), B̃ = 2 (figure 9b) and two reference flows: PNPF (figure 9c) and
PNCPF (figure 9d). The characteristics of the optimal perturbation are summarized
in table 1. For PNCPF, the flow domain is delimited by the fixed wall at ỹ = 1 and
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Figure 10. Projection of the optimal perturbation on the eigenmodes for R̃e= 1000 and
(a) B̃ = 0.02; (b) B̃ = 2.

the yield surface at ỹ = 0 which plays the role of a moving plate. Therefore, in this
situation, the characteristic scale length is implicitly the distance between the two
walls at ỹ = 0 and ỹ = 1. Bergström (2005) used the half-distance between the two
plates as a scale length and found that βopt = 1.7.

The computations performed for different Re show that for sufficiently large Re
we have: (i) Gopt ≈ 1.96 × 10−4 × Re2 and topt ≈ 0.076 × Re in the case of PNPF, in
agreement with Reddy & Henningson (1993) and (ii) Gopt ≈ 0.77 × 10−4 × Re2 and
topt ≈ 0.033 × Re in the case of PNCPF.

Consider now the PBPF, and figure 9(a). As expected, although B̃ � 1, the values
of Gmax are significantly reduced everywhere in the (α̃, β̃)-plane compared to PNPF.
The projection of the optimal perturbation on the eigenbasis, reported in figure 10(a),
shows that the least damped modes are the main components of this optimal, as
expected from the pseudospectrum.

Figures 11(a) and 11(b) display the velocity field vey+wez of the optimal disturbance
characterized by two counter-rotating vortices and the optimal streaks. Initially, the
kinetic energy of the optimum perturbation is mainly in the v and w components.
At t̃ = t̃opt, it is contained mainly in the u field. As explained by several authors
(Butler & Farrell 1992; Asai & Nishioka 1989; Trefethen et al. 1993), the streamwise
velocity grows linearly with time via a lift-up mechanism before being damped by the
viscosity. The typical time scale for the evolution is the viscous one, thus the growth
lasts a (non-dimensional) time O(R̃e) and the streamwise velocity is amplified R̃e

times, yielding an energy amplification scaling with R̃e
2
.

With increasing B̃ , Gmax(α̃, β̃) decreases owing to the increase of the viscous
dissipation, as shown in figure 9(b) for B̃ = 2. The obliqueness of the optimal
perturbation is a consequence of the nonlinear variation of the effective viscosity
between the wall and the yield surface. Its projection on the eigenbasis represented in
the figure 10(b) shows that it is constructed mainly with the eigenmodes corresponding
to eigenvalues at or near the intersection of branches S, A and P (see figure 2). The
development of the perturbation in the (x̃, ỹ) and (ỹ, z̃) cross-sections is shown in
figures 12–14 at t̃ = 0, t̃opt/2, t̃opt and 3t̃opt/2. Initially, the contours of v are tilted in
the direction opposite to the mean shear (figure 13a). As time evolves, the perturbation
is tilted to a more upright orientation (figure 13c). At short time, not represented
here, the vertical velocity is intensified. Thus, the perturbation gains energy by taking
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Figure 11. Optimal perturbation and optimal streaks at R̃e =1000 and B̃ = 0.02. (a) Velocity
vectors vey + wez of the optimal perturbation at t = 0. (b) Streamwise velocity u contours at

t = topt. The solid lines represent positive values and the dotted lines represent negative values.
The same contour levels for the positive and negative values with respect to |u|max are plotted:
[0.05, 0.15, . . . , 0.95].

advantage of the two-dimensional Reynolds stress mechanism (Pedlosky 1987), in
addition to the lift-up mechanism that causes the growth of u in figure 14.

A comprehensive study of the dependence of Gopt, t̃opt, α̃opt, β̃opt and Θ = tan−1(β/α)

on the Bingham number was performed for different values of R̃e: 1000, 3000, 6000
and 104, and the results are depicted in figure 15. Here, Θ is a measure of the
obliqueness in terms of the angle of the wave vector (α̃, β̃) with respect to the x̃-axis.
For a spanwise perturbation, β =0 and Θ = 0, while for streamwise perturbation,
α = 0 and Θ = 90◦.

As expected, with increasing B̃ , Gopt decreases until reaching the limit Gopt = 1,
corresponding to the no-energy-growth condition. For R̃e =103, this condition is

reached at B̃ ≈ 22, as is shown by curve (1) in figure 15(a) where Gopt/R̃e
2
= 10−6

from B̃ ≈ 22. Also, for a given value of B̃ , Gopt increases with increasing R̃e. In the

range of B̃ where the different curves coincide, Gopt varies as R̃e
2
, and the numerical

results can be fitted by the relation Gopt ≈ 0.77 × 10−4 × R̃e
2

× exp(−1.3 B̃0.60). It

is clear that the range of B̃ where Gopt ∝ R̃e
2

is wider for larger R̃e. A similar
analysis is made for the results presented in figure 15(b). In the range of B̃ where the

different curves coincide, t̃opt varies proportionally to R̃e and the numerical results

can be described by t̃opt ≈ 0.033 × R̃e × exp(−1.04B̃0.45). It is not surprising to see t̃opt

decreasing abruptly to zero when the condition of no energy growth is reached (curve

1 in figure 15b). The discontinuity in curve (2) corresponding to R̃e = 3000 indicates
that the optimal perturbation changes from oblique to spanwise (see also curve 2 in
the figure 15c).

6. Condition for no energy growth
This section is devoted to the computation of conditions for which there is no

growth of the perturbation kinetic energy. Assuming a unit mass density, the kinetic
energy density of a three-dimensional perturbation confined to a single wavenumber
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Figure 12. Velocity vectors vey + wez at x = 0 for the optimal perturbation with R̃e=

1000, B̃ = 2, located at α̃ = 1.07, β̃ = 3.11: (a) t̃ = 0, |v|max = 1,G = 1; (b) t̃ =0.5t̃opt, |v|max =

0.915,G =6.71; (c) t̃ = t̃opt, |v|max = 0.509,Gopt = 10.619; (d) t̃ = 1.5t̃opt, |v|max = 0.254,

G =7.466. Here topt = 8.98 advective time units.

in the x- and z-directions is given by

E =
1

2

αβ

4π2

1

1 − y0

∫ 1

y0

∫ 2π/α

0

∫ 2π/β

0

(
u′

r

2
+ v′

r

2
+ w′

r

2)
dz dx dy, (6.1)

where u′
r is the real part of {u(y, t)exp[i(αx +βz)]} and similarly for v′

r and w′
r . Using

the continuity equation, E may be written in terms of u(y, t) and v(y, t) as

E =
1

4(1 − y0)

∫ 1

y0

(
k2

β2
u∗u + v∗v +

1

β2
Dv∗Dv +

iα

β2
(Dv∗u − u∗Dv)

)
. (6.2)

Modulo the factor (4(1 − y0))
−1, the E expression is the norm energy defined

by (3.17) and (3.18). Therefore, there is no energy growth if (d/dt)‖q‖2
E < 0, with

q = (u, v)T :

d

dt
‖q‖2

E =

(
q,

dq
dt

)
E

+

(
dq
dt

, q
)

E

= (q, −iAuvq)E + (−iAuvq, q)E = 2Im(Auvq, q)E,
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Figure 13. Normal velocity v contours at z =0 for the optimal perturbation with R̃e= 1000,

B̃ = 2, located at α̃ = 1.07, β̃ = 3.11: (a) t̃ = 0, |v|max = 1,G = 1; (b) t̃ = 0.5t̃opt, |v|max =

0.915,G = 6.71; (c) t̃ = t̃opt, |v|max = 0.509,Gopt = 10.619; (d) t̃ = 1.5t̃opt, |v|max =0.254,G =
7.466.

where Auv ≡ M−1
uv Luv from (3.16). After some manipulations, it can be shown that

Im(Auvq, q)E = I(u) − 1

Re
[V(u) + B(u)] (6.3)

where I(u), V(u)/Re and B(u)/Re denote the inertial, viscous and Bingham terms,
defined by

I(u) = −〈(urvr + uivi)DU〉 (6.4)

V(u) = 〈|Du|2 + (α2 + β2)|u|2〉 (6.5)

B(u) = B

〈
3|Dv|2 + k2|u|2

|DU |

〉
+ B

〈
k2|αu − iDv|2 + |αDu − i(D2v + βv)|2

β2|DU |

〉
, (6.6)

where

|u|2 = u2
r + u2

i , |u|2 = |u|2 + |v|2 + | − α

β
u +

i

β
Dv|2, and 〈·〉 =

∫ 1

y0

(·) dy.
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Figure 14. Streamwise velocity contours at x = 0 for the optimal perturbation with R̃e = 1000,

B̃ =2, located at α̃ = 1.07, β̃ = 3.11: (a) t̃ = 0,G = 1, |u|max = 0.943, (b) t̃ = 0.5t̃
opt

,G =

6.71, |u|max = 5.022, (c) t̃ = t̃
opt

,Gopt = 10.619, |u|max = 6.714 and (d) t̃ = 0.5t̃
opt

,G = 7.466,
|u|max = 5.622. Values of u are normalized by the maximum value of v at time t̃ = 0.

There is no energy growth if the right-hand side of (6.3) is negative. Define Re1 as
the largest value of Re such that this condition is satisfied:

1

Re1

= sup
u

I(u)

V(u) + B(u)
, (6.7)

where u is an admissible perturbation satisfying the continuity equation and the
boundary conditions. This optimization problem can be solved using variational
calculus. The corresponding Euler equations are

F2v + BH(u, v) = − λ

2
[k2uDUb + iαD(vDUb)], (6.8)

k2Fu − iαD(Fv) − B

[
k4u − iα3Dv

|DUb| + αD

(
D(iDv − αu)

|DUb|

)]
= λ

β2

2
DUbv, (6.9)

where

H(u, v) = − 4k2D

(
Dv

|DUb|

)
− i(D2 + k2)

[
D(−αu + iDv) + iβ2v

|DUb|

]
.
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2
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different values of R̃e: (1) R̃e= 1000, (2) R̃e= 3000, (3) R̃e= 6000 and (4) R̃e= 104.

The boundary conditions are

y = y0; u = v = Dv = 0, (6.10)

y = 1; u = v =Dv = 0. (6.11)
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Flow α̃ β̃ R̃eE

Plane Newtonian Poiseuille flow 0 2.04 49.60
Plane Newtonian Couette–Poiseuille flow 0 3.178 79.72
Plane Bingham–Poiseuille flow

(
B̃ = 0.02

)
0 3.21 82.41

Plane Bingham–Poiseuille flow
(
B̃ = 8

)
0.768 2.012 493.15

Plane Bingham–Poiseuille flow
(
B̃ = 38

)
0.683 0 1342.5

Table 2. Critical conditions for no energy growth.

The function Re1(α, β, B) is the smallest positive eigenvalue λ of (6.8)–(6.11).
If β = 0, the (v, w) formulation is adopted and Re1(α, 0, B) is the smallest positive

eigenvalue of

(D2 − α2)2v − 4α2BD

(
Dv

|DU |

)
= −iα

λ

2
[2DvDU + vD2U ], (6.12)

with

y = y0; v = Dv = 0, (6.13)

y = 1; v =Dv = 0. (6.14)

The numerical resolution of the eigenvalue problems (6.8)–(6.11) and (6.12)–(6.14)
is based on the procedure described previously for mapping [y0, 1] onto [0, 1] and
re-scaling the flow properties and the controlling parameters.

Figure 16(a–c) illustrates the contours of R̃e1 in the (α̃, β̃)-plane, which separate
regions of initial energy density growth from regions of initial energy decay, for

B̃ = 0.02, 8 and 38, respectively. The contour R̃e1p at which the energy growth region

is delimited by inner and outer boundaries is indicated with a thick line. For B̃ = 0.02

and 8, R̃e1p is reached at β = 0, while for B̃ = 38, it is reached at α = 0.

Furthermore, it can be shown that R̃e1(α̃, β̃) → ∞ as α̃, β̃ → 0 or α̃, β̃ → ∞.
Using Cauchy–Schwarz, Poincaré and triangle inequalities, Frigaard & Nouar (2003)
showed that there is no energy growth if

Re � Re1 =
2y0

Bδ

[
π2 + δ2(1 − y0)(1 + 2k2y0 − y0)

(1 − y0)4

]
, (6.15)

with α = δ cos φ, β = δ sinφ: φ ∈ [0, π/2]. From equation (6.15), it is clear that Re1 →
∞ as δ → 0 or δ → ∞.

The maximum Reynolds number R̃eE =minα̃,β̃R̃e1

(
α̃, β̃

)
that ensures no energy

growth is given with the associated wavenumbers in table 2 for different B̃ . For
comparison, the critical values, R̃eE, αE and βE , for PNPF and PNCPF are also
given. For PNPF, the results are in very good agreement with those reported by Busse
(1969) and Joseph & Carmi (1969). For B̃ = 0.02, we have R̃eE = 82.41, which is close
to that obtained for PNCPF, that is R̃eE = 79.82. The numerical results show that

R̃eE → 79.82 as B̃ → 0, while for PNPPF we have R̃eE =49.6. The origin of this
discontinuous behaviour at B̃ = 0 has already been discussed in § 5.1.

The evolution of R̃eE with B̃ is shown by curve 1 in figure 17. The conditional
stability boundary (curve 2) derived in Nouar & Frigaard (2001) is also displayed,
where purely viscous dissipation was used for deriving the stability bounds. The effect
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of the yield stress was to reduce the width of the yielded region. For large B̃ (B̃ � 30),

R̃eE varies as B̃1/2. The numerical results may be fitted as: R̃eE ≈ 217B̃1/2.
The critical wavenumbers α̃E and β̃E are represented as functions of B̃ in figure 18

and are also summarized in table 2. For B̃ < 4, the most dangerous perturbation
is in the spanwise direction (α = 0), with a slow decrease of β̃E from 3.18 to 2.77.
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Figure 17. Critical Reynolds number versus B̃: (1) linear analysis; (2) conditional stability
bound (Nouar & Frigaard 2001). The dashed line shows a B̃1/2 variation for large B̃ and the
dotted line is the limit of ReE as B̃ → 0, i.e. PNCPF.
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wavenumbers versus B̃ . The dashed line shows a B̃−1/2 variation. The arrow indicates that as
B̃ → 0, β̃E tends to the value corresponding to PNCPF.

For B̃ > 32, the most dangerous perturbation is in the streamwise direction (β =0,
see figure 16c). Furthermore, for large B̃ , the numerical results show that α̃ evolves
proportionally to B̃−0.5. This result confirms and improves the result obtained by

Frigaard & Nouar (2003), who have shown that

√
α̃2 + β̃2 evolves proportionally
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to B̃−0.5. In terms of quantities without a tilde we have αE ∼ B1/4; thus the short-
wavelength perturbations are the most dangerous. Finally, for 4 < B̃ < 32 the most
dangerous perturbation is oblique. The viscous dissipation is much more sensitive to
the Bingham number for spanwise than for streamwise disturbances. The variation of
the critical wavenumbers with B is probably a consequence of the anisotropy of the
shear-stress tensor perturbation due to the shear thinning character of the effective
viscosity

7. Conclusion and discussion
In this paper, the linear stability analysis and the receptivity of the plane Poiseuille

flow of a Bingham fluid have been thoroughly investigated using modal and non-
modal approaches.

The modal approach led to the following results: First, for a streamwise
perturbation, the effect of B is reduced essentially to the variation of the plug
zone width and of the inertial terms, because τ ′

xy is independent of B . For spanwise
and oblique perturbations, the dissipation role of B is significant. Second, the plane
Bingham–Poiseuille flow is linearly stable. This is a consequence of the vanishing
perturbation at the yield surface. This condition arises from the Bingham model
which imposes that the plug zone moves as a rigid body and, in our case, can have
only a linear motion. Also, it can be conjectured that the Poiseuille flow of Bingham
fluid in circular and annular pipes is linearly stable. This result can be extended to
the Herschel–Bulkley, Casson or similar models, which assume that, below the yield
stress, γ̇ = 0.

The non-normality of the linear stability operator was characterized using the
ε-pseudospectrum and the numerical range tools. It was shown that the Bingham
terms reduce the degree of non-normality. However, this effect is much weaker for
a streamwise perturbation than for a spanwise or oblique perturbation. The most
relevant results deduced from the non-modal approach are: First, the vanishing of
the disturbance at the yield surface and the increase of the viscous dissipation induced
by the Bingham terms reduce the energy transient growth compared to PNPF for any
(α̃, β̃). Second, for B̃ � 1, the optimal perturbation is almost streamwise vortices with
α̃ ≈ 0 and β̃ ≈ 3.4. The algebraic growth of the kinetic energy is provided by the lift-up

mechanism and the R̃e
2

scalings for Gopt and R̃e for t̃opt were recovered. In contrast,

for B̃ = O(1) or B̃ > 1, the optimal perturbation is oblique. It gains energy by a
combination of Orr and lift-up mechanisms. This obliqueness is a consequence of the
anisotropy of the perturbation shear stress tensor induced by the dependence of the
effective viscosity on the shear rate.

Finally, the maximum Reynolds number R̃eE below which there is no energy growth
was determined for a large range of B̃ . The numerical results showed that for B̃ � 1,

R̃eE ≈ 79.8 and the most dangerous perturbation is streamwise with β̃ =3.21. For large

B̃ (B̃ � 30), R̃eE may be approximated as R̃eE ≈ 217 B̃1/2 and the most dangerous
perturbation is spanwise with α̃ evolving proportionaly to B̃−0.5. The variation of
the critical wavenumbers with B is due to the shear-thinning character of the
fluid.

The analysis presented shows the limits of the linear theory. In particular an
investigation of the breakup of the plug zone, physically important especially
for low Bingham numbers, cannot be done without accounting of nonlinear
effects.
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